ENTITY ASMExample IS
 PORT (Clock, Resetn, InBit, BufFull : IN STD_LOGIC ;
 state : BUFFER STD_LOGIC_VECTOR (1 DOWNTO 0);
 CountEN, RegLD, OutFlag : OUT STD_LOGIC) ;
END ASMExample ;

ARCHITECTURE ASMArch OF ASMExample IS
 CONSTANT A : STD_LOGIC_VECTOR (1 DOWNTO 0):= "10";
 CONSTANT B : STD_LOGIC_VECTOR (1 DOWNTO 0):= "11";
 CONSTANT C : STD_LOGIC_VECTOR (1 DOWNTO 0):= "00";
 CONSTANT D : STD_LOGIC_VECTOR (1 DOWNTO 0):= "01";

 SIGNAL nextState: STD_LOGIC_VECTOR (1 DOWNTO 0);

BEGIN
 PROCESS (Resetn, Clock) -- State transitions
 BEGIN
 IF Resetn = '0' THEN
 state <= A ;
 ELSIF (Clock'EVENT AND Clock = '1') THEN
 state <= nextState;
 END IF;
 END PROCESS ;
PROCESS (state, InBit, BufFull) -- conditional and uncond. Outputs, next state
BEGIN -- All outputs are default to '0'
 CountEN <= '0';
 RegLD <= '0';
 OutFlag <= '0';
 CASE state IS
 WHEN A =>
 CountEN <= '1';
 RegLD <= '1';
 IF InBit = '0' THEN nextState <= B ;
 ELSE nextState <= C ;
 END IF ;
 WHEN B =>
 nextState <= A;
 WHEN C =>
 RegLD <= '1';
 IF BufFull = '1' THEN
 CountEN <= '1';
 nextState <= D;
 ELSE
 nextState <= C;
 END IF ;
 WHEN D =>
 OutFlag <= '1';
 nextState <= A;
 WHEN OTHERS =>
 nextState <= A;
 END CASE ;
END PROCESS ;
END ASMArch ;