ENTITY example2 IS
 PORT (x1, x2, x3, x4 : IN BIT ;
 f, g : OUT BIT) ;
END example2 ;

ARCHITECTURE LogicFunc OF example2 IS
BEGIN
 f <= (x1 AND x3) OR (NOT x3 AND x2) ;
 g <= (NOT x3 OR x1) AND (NOT x3 OR x4) ;
END LogicFunc ;
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY fulladd IS
 PORT (Cin, x, y : IN STD_LOGIC;
 s, Cout : OUT STD_LOGIC) ;
END fulladd ;

ARCHITECTURE LogicFunc OF fulladd IS
BEGIN
 s <= x XOR y XOR Cin ;
 Cout <= (x AND y) OR (Cin AND x) OR (Cin AND y) ;
END LogicFunc ;

Figure 5.4 Full-adder

Figure 5.23 VHDL code for the full-adder
Figure 5.6 An n-bit ripple-carry adder

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY adder4 IS
 PORT (Cin : IN STD_LOGIC;
 x3, x2, x1, x0 : IN STD_LOGIC;
 y3, y2, y1, y0 : IN STD_LOGIC;
 s3, s2, s1, s0 : OUT STD_LOGIC;
 Cout : OUT STD_LOGIC);
END adder4;

ARCHITECTURE Structure OF adder4 IS
 SIGNAL c1, c2, c3 : STD_LOGIC;
 COMPONENT fulladd
 PORT (Cin, x, y : IN STD_LOGIC;
 s, Cout : OUT STD_LOGIC);
 END COMPONENT;
BEGIN
 stage0: fulladd PORT MAP (Cin, x0, y0, s0, c1);
 stage1: fulladd PORT MAP (c1, x1, y1, s1, c2);
 stage2: fulladd PORT MAP (c2, x2, y2, s2, c3);
 stage3: fulladd PORT MAP (Cin => c3, Cout => Cout, x => x3, y => y3, s => s3);
END Structure;

Figure 5.24 VHDL code for a four-bit adder
Summary:

Entity Declaration:

ENTITY entity_name IS
 PORT (signal_name, signal_name, ... : signal_mode signal_type;
 signal_name, signal_name, ... : signal_mode signal_type;
 ...
 signal_name, signal_name, ... : signal_mode signal_type);
END entity_name;

Signal types discussed in book (p.687, etc.)
 - BIT
 - BIT_VECTOR
 - STD_LOGIC
 - STD_LOGIC_VECTOR
 - STD_ULOGIC
 - SIGNED
 - UNSIGNED
 - INTEGER
 - BOOLEAN
 - ENUMERATION.

Signal modes: (Table A2, p. 695)
- IN: input signal only
- OUT: output signal only; cannot be used on the right side of the simple signal assignment operator <=
- INOUT: a signal that is both an input and an output.
- BUFFER: an output signal. However, it can be used on the right side of the simple signal assignment operator <=

Statement in the Architecture body can be **structural** or **behavioral**.

PORT MAP statement is the only structural type statement in VHDL, used to instantiate a component that has been declared using a component declaration.

Simple signal assignment: signal_name <= expression;
Selected signal assignment: **WITH-SELECT-WHEN** statement
Conditional signal assignment: **WHEN-ELSE** statement

PROCESS statement (contains **sequential** statements)
 - Simple signal assignment statement <=
 - Variable assignment statement :=
 - IF-THEN-ELSE statement
 - CASE-WHEN statement
 - FOR-LOOP and WHILE-LOOP statements