Summary:

Entity Declaration:

ENTITY entity_name IS
 PORT (signal_name, signal_name, ... : signal_mode signal_type;
 signal_name, signal_name, ... : signal_mode signal_type;
 ...
 signal_name, signal_name, ... : signal_mode signal_type);
END entity_name;

Signal types discussed in book (p.687, etc.)
 BIT, BIT_VECTOR, STD_LOGIC, STD_LOGIC_VECTOR,
 STD_ULOGIC, SIGNED, UNSIGNED, INTEGER, BOOLEAN,
 ENUMERATION.

Signal modes: (Table A2, p. 695)
 • IN: input signal only
 • OUT: output signal only; cannot be used on the right side of the
 simple signal assignment operator <=
 • INOUT: a signal that is both an input and an output.
 • BUFFER: an output signal. However, it can be used on the right
 side of the simple signal assignment operator <=
Statement in the Architecture body can be **structural** or **behavioral**.

PORT MAP statement is the only structural type statement in VHDL, used to instantiate a component that has been declared using a component declaration.

Simple **signal assignment**: `signal_name <= expression;`

Selected **signal assignment**: **WITH-SELECT-WHEN** statement

Conditional **signal assignment**: **WHEN-ELSE** statement

PROCESS statement (contains **sequential** statements)
- Simple signal assignment statement `<=`
- Variable assignment statement `:=`
- **IF-THEN-ELSE** statement
- **CASE-WHEN** statement
- **FOR-LOOP** and **WHILE-LOOP** statements
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY mux4to1Equations IS
 PORT (w0, w1, w2, w3 : IN STD_LOGIC;
 s : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
 f : OUT STD_LOGIC);
END mux4to1Equations;

ARCHITECTURE Behavior OF mux4to1Equations IS
BEGIN
 f <=
 (NOT s(1) AND NOT s(0) AND w0)
 OR (NOT s(1) AND s(0) AND w1)
 OR (s(1) AND NOT s(0) AND w2)
 OR (s(1) AND s(0) AND w3);
END Behavior;
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY mux4to1 IS
 PORT (w0, w1, w2, w3 : IN STD_LOGIC;
 s : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
 f : OUT STD_LOGIC);
END mux4to1;

ARCHITECTURE Behavior OF mux4to1 IS
BEGIN
 WITH s SELECT
 f <= w0 WHEN "00",
 w1 WHEN "01",
 w2 WHEN "10",
 w3 WHEN OTHERS;
END Behavior;

Figure 6.28 VHDL code for a 4-to-1 multiplexer
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY mux4to1When IS
 PORT (w0, w1, w2, w3 : IN STD_LOGIC;
 s : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
 f : OUT STD_LOGIC);
END mux4to1When;

ARCHITECTURE Behavior OF mux4to1When IS
BEGIN
 f <= w0 WHEN s ="00" ELSE w1 WHEN s ="01" ELSE w2 WHEN s ="10" ELSE w3;
END Behavior;
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dec2to4Equations IS
 PORT (w : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
 En : IN STD_LOGIC;
 y : OUT STD_LOGIC_VECTOR(0 TO 3));
END dec2to4Equations;

ARCHITECTURE Behavior OF dec2to4Equations IS
 SIGNAL Enw : STD_LOGIC_VECTOR(2 DOWNTO 0);
BEGIN
 y(0) <= En AND NOT w(1) AND NOT w(0);
 y(1) <= En AND NOT w(1) AND w(0);
 y(2) <= En AND w(1) AND NOT w(0);
 y(3) <= En AND w(1) AND w(0);
END Behavior;
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dec2to4When IS
 PORT (w : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
 En : IN STD_LOGIC;
 y : OUT STD_LOGIC_VECTOR(0 TO 3));
END dec2to4When;

ARCHITECTURE Behavior OF dec2to4When IS
BEGIN
 y <= "1000" WHEN En = '1' AND W="00" ELSE
 "0100" WHEN En = '1' AND W="01" ELSE
 "0010" WHEN En = '1' AND W="10" ELSE
 "0001" WHEN En = '1' AND W="11" ELSE
 "0000";
END Behavior;
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dec2to4 IS
 PORT (w : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
 En : IN STD_LOGIC;
 y : OUT STD_LOGIC_VECTOR(0 TO 3))
END dec2to4;

ARCHITECTURE Behavior OF dec2to4 IS
 SIGNAL Enw : STD_LOGIC_VECTOR(2 DOWNTO 0);
BEGIN
 Enw <= En & w;
 WITH Enw SELECT
 y <= "1000" WHEN "100",
 "0100" WHEN "101",
 "0010" WHEN "110",
 "0001" WHEN "111",
 "0000" WHEN OTHERS;
END Behavior;
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY priority IS
 PORT (w : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 y : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
 z : OUT STD_LOGIC);
END priority;

ARCHITECTURE Behavior OF priority IS
BEGIN
 y <= "11" WHEN w(3) = '1' ELSE
 "10" WHEN w(2) = '1' ELSE
 "01" WHEN w(1) = '1' ELSE
 "00";
 z <= '0' WHEN w = "0000" ELSE '1';
END Behavior;

Figure 6.32. VHDL code for a priority encoder.